Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 13: 902597, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35711782

RESUMO

To explore the potential application of non-Saccharomyces yeasts screened from Baijiu fermentation environment in winemaking, the effect of four Baijiu non-Saccharomyces yeasts (two Zygosaccharomyces bailii and two Pichia kudriavzevii) sequentially fermented with Saccharomyces cerevisiae on the physicochemical parameters and volatile compounds of wine was analyzed. The results indicated that there was no obvious antagonism between S. cerevisiae and Z. bailli or P. kudriavzevii in sequential fermentations, and all strains could be detected at the end of alcoholic fermentation. Compare with S. cerevisiae pure fermentation, Z. bailii/S. cerevisiae sequential fermentations significantly reduced higher alcohols, fatty acids, and ethyl esters and increased acetate esters; P. kudriavzevii/S. cerevisiae sequential fermentations reduced the contents of C6 alcohols, total higher alcohols, fatty acids, and ethyl esters and significantly increased the contents of acetate esters (especially ethyl acetate and 3-methylbutyl acetate). Sequential fermentation of Baijiu non-Saccharomyces yeast and S. cerevisiae improved the flavor and quality of wine due to the higher ester content and lower concentration of higher alcohols and fatty acids, non-Saccharomyces yeasts selected from Baijiu fermentation environment have potential applications in winemaking, which could provide a new strategy to improve wine flavor and quality.

2.
J Agric Food Chem ; 69(5): 1637-1646, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33502852

RESUMO

The n-propanol produced by Saccharomyces cerevisiae has a remarkable effect on the taste and flavor of Chinese Baijiu. The n-propanol metabolism-related genes were deleted to evaluate the role in the synthesis of n-propanol to ascertain the key genes and pathways for the production of n-propanol by S. cerevisiae. The results showed that CYS3, GLY1, ALD6, PDC1, ADH5, and YML082W were the key genes affecting the n-propanol metabolism in yeast. The n-propanol concentrations of α5ΔGLY1, α5ΔCYS3, and α5ΔALD6 increased by 121.75, 22.75, and 17.78%, respectively, compared with α5. The n-propanol content of α5ΔPDC1, α5ΔADH5, and α5ΔYML082W decreased by 24.98, 8.35, and 8.44%, respectively, compared with α5. The contents of intermediate metabolites were measured, and results showed that the mutual transformation of glycine and threonine in the threonine pathway and the formation of propanal from 2-ketobutyrate were the core pathways for the formation of n-propanol. Additionally, YML082W played important role in the synthesis of n-propanol by directly producing 2-ketobutyric acid through l-homoserine. This study provided valuable insights into the n-propanol synthesis in S. cerevisiae and the theoretical basis for future optimization of yeast strains in Baijiu making.


Assuntos
1-Propanol/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fermentação , Genes Reguladores , Redes e Vias Metabólicas , Proteínas de Saccharomyces cerevisiae/metabolismo , Vinho/análise , Vinho/microbiologia
3.
Food Microbiol ; 95: 103713, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33397627

RESUMO

Higher alcohols are important flavor substance in alcoholic beverages. The content of α-amino nitrogen (α-AN) in the fermentation system affects the formation of higher alcohols by Saccharomyces cerevisiae. In this study, the effect of α-AN concentration on the higher alcohol productivity of yeast was explored, and the mechanism of this effect was investigated through metabolite and transcription sequence analyses. We screened 12 most likely genes and constructed the recombinant strain to evaluate the effect of each gene on high alcohol formation. Results showed that the AGP1, GDH1, and THR6 genes were important regulators of higher alcohol metabolism in S. cerevisiae. This study provided knowledge about the metabolic pathways of higher alcohols and gave an important reference for the breeding of S. cerevisiae with low-yield higher alcohols to deal with the fermentation system with different α-AN concentrations in the brewing industry.


Assuntos
Álcoois/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fermentação , Aromatizantes , Perfilação da Expressão Gênica , Genes Reguladores , Redes e Vias Metabólicas , Nitrogênio/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
J Agric Food Chem ; 68(47): 13863-13870, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33166457

RESUMO

Ethyl lactate is an important flavor substance in baijiu, and it is also one of the common raw materials in the production of flavors and spices. In this study, we first established the ethyl lactate biosynthesis pathway in Saccharomyces cerevisiae α(L) by introducing propionyl coenzyme A transferase (Pct) and alcohol acyltransferase (AAT), and the results showed that strain α(L)-CP-Ae produced the most ethyl lactate 239.53 ± 5.45 mg/L. Subsequently, the copy number of the Pctcp gene and AeAT9 gene was increased, and the modified strain α(L)-tCP-tAe produced 346.39 ± 3.99 mg/L ethyl lactate. Finally, the porin gene (por2) and the mitochondrial pyruvate carrier gene (MPC2) were knocked to impede mitochondrial transport of pyruvate, and the final modified strain α(L)-tCP-tAeΔpor2 produced ethyl lactate 420.48 ± 6.03 mg/L.


Assuntos
Lactatos , Saccharomyces cerevisiae , Vias Biossintéticas , Aromatizantes , Saccharomyces cerevisiae/genética
5.
Biomed Res Int ; 2020: 6802512, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33204707

RESUMO

The higher alcohols produced by Saccharomyces cerevisiae exert remarkable influence on the taste and flavour of Chinese Baijiu. In order to study the regulation mechanism of amino acid metabolism genes on higher alcohol production, eight recombinant strains with amino acid metabolism gene deletion were constructed. The growth, fermentation performance, higher alcohol production, and expression level of genes in recombinant and original α5 strains were determined. Results displayed that the total higher alcohol concentration in α5ΔGDH1 strain decreased by 27.31% to 348.68 mg/L compared with that of α5. The total content of higher alcohols in α5ΔCAN1 and α5ΔGAT1 strains increased by 211.44% and 28.36% to 1493.96 and 615.73 mg/L, respectively, compared with that of α5. This study is the first to report that the CAN1 and GAT1 genes have great influence on the generation of higher alcohols. The results demonstrated that amino acid metabolism plays a substantial role in the metabolism of higher alcohols by S. cerevisiae. Interestingly, we also found that gene knockout downregulated the expression levels of the knocked out gene and other genes in the recombinant strain and thus affected the formation of higher alcohols by S. cerevisiae. This study provides worthy insights for comprehending the metabolic mechanism of higher alcohols in S. cerevisiae for Baijiu fermentation.


Assuntos
Álcoois/metabolismo , Aminoácidos/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Bebidas Alcoólicas/microbiologia , Sistemas de Transporte de Aminoácidos Básicos/genética , Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Sistemas de Transporte de Aminoácidos Neutros/genética , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Aminoácidos/genética , Fermentação , Microbiologia de Alimentos , Fatores de Transcrição GATA/genética , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Glutamato Descarboxilase/genética , Desidrogenase de Glutamato (NADP+)/genética , Desidrogenase de Glutamato (NADP+)/metabolismo , Microrganismos Geneticamente Modificados , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/metabolismo , Transativadores/genética , Transativadores/metabolismo , Transaminases/genética , Transaminases/metabolismo
6.
Appl Microbiol Biotechnol ; 103(12): 4917-4929, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31073877

RESUMO

Undesirable flavor caused by excessive higher alcohols restrains the development of the wheat beer industry. To clarify the regulation mechanism of the metabolism of higher alcohols in wheat beer brewing by the top-fermenting yeast Saccharomyces cerevisiae S17, the effect of temperature on the fermentation performance and transcriptional levels of relevant genes was investigated. The strain S17 produced 297.85 mg/L of higher alcohols at 20 °C, and the production did not increase at 25 °C, reaching about 297.43 mg/L. Metabolite analysis and transcriptome sequencing showed that the metabolic pathways of branched-chain amino acids, pyruvate, phenylalanine, and proline were the decisive factors that affected the formation of higher alcohols. Fourteen most promising genes were selected to evaluate the effects of single-gene deletions on the synthesis of higher alcohols. The total production of higher alcohols by the mutants Δtir1 and Δgap1 was reduced by 23.5 and 19.66% compared with the parent strain S17, respectively. The results confirmed that TIR1 and GAP1 are crucial regulatory genes in the metabolism of higher alcohols in the top-fermenting yeast. This study provides valuable knowledge on the metabolic pathways of higher alcohols and new strategies for reducing the amounts of higher alcohols in wheat beer.


Assuntos
Álcoois/metabolismo , Cerveja/microbiologia , Fermentação , Genes Reguladores , Saccharomyces cerevisiae/genética , Temperatura , Reatores Biológicos , Aromatizantes , Deleção de Genes , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Redes e Vias Metabólicas , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Paladar
7.
Biotechnol Biofuels ; 11: 307, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30455736

RESUMO

BACKGROUND: The biological production of 2,3-butanediol from xylose-rich raw materials from Klebsiella pneumoniae is a low-cost process. RpoD, an encoding gene of the sigma factor, is the key element in global transcription machinery engineering and has been successfully used to improve the fermentation with Escherichia coli. However, whether it can regulate the tolerance in K. pneumoniae remains unclear. RESULTS: In this study, the kpC mutant strain was constructed by altering the expression quantity and genotype of the rpoD gene, and this exhibited high xylose tolerance and 2,3-butanediol production. The xylose tolerance of kpC strain was increased from 75 to 125 g/L, and the yield of 2,3-butanediol increased by 228.5% compared with the parent strain kpG, reaching 38.6 g/L at 62 h. The RNA sequencing results showed an upregulated expression level of 500 genes and downregulated expression level of 174 genes in the kpC mutant strain. The pathway analysis further showed that the differentially expressed genes were mainly related to signal transduction, membrane transport, carbohydrate metabolism, and energy metabolism. The nine most-promising genes were selected based on transcriptome sequencing, and were evaluated for their effects on xylose tolerance. The overexpression of the tktA encoding transketolase, pntA encoding NAD(P) transhydrogenase subunit alpha, and nuoF encoding NADH dehydrogenase subunit F conferred increased xylose consumption and increased 2,3-butanediol production to K. pneumoniae. CONCLUSIONS: These results suggest that the xylose tolerance and 2,3-butanediol production of K. pneumoniae can be greatly improved by the directed evolution of rpoD. By applying transcriptomic analysis, the upregulation of tktA, pntA, and nuoF that were coded are essential for the xylose consumption and 2,3-butanediol production. This study will provide reference for further research on improving the fermentation abilities by means of other organisms.

8.
Appl Microbiol Biotechnol ; 102(4): 1783-1795, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29305698

RESUMO

Higher alcohols significantly influence the quality and flavor profiles of Chinese Baijiu. ILV1-encoded threonine deaminase, LEU1-encoded α-isopropylmalate dehydrogenase, and LEU2-encoded ß-isopropylmalate dehydrogenase are involved in the production of higher alcohols. In this work, ILV1, LEU1, and LEU2 deletions in α-type haploid, a-type haploid, and diploid Saccharomyces cerevisiae strains and ILV1, LEU1, and LEU2 single-allele deletions in diploid strains were constructed to examine the effects of these alterations on the metabolism of higher alcohols. Results showed that different genetic engineering strategies influence carbon flux and higher alcohol metabolism in different manners. Compared with the parental diploid strain, the ILV1 double-allele-deletion diploid mutant produced lower concentrations of n-propanol, active amyl alcohol, and 2-phenylethanol by 30.33, 35.58, and 11.71%, respectively. Moreover, the production of isobutanol and isoamyl alcohol increased by 326.39 and 57.6%, respectively. The LEU1 double-allele-deletion diploid mutant exhibited 14.09% increased n-propanol, 33.74% decreased isoamyl alcohol, and 13.21% decreased 2-phenylethanol production, which were similar to those of the LEU2 mutant. Furthermore, the LEU1 and LEU2 double-allele-deletion diploid mutants exhibited 41.72 and 52.18% increased isobutanol production, respectively. The effects of ILV1, LEU1, and LEU2 deletions on the production of higher alcohols by α-type and a-type haploid strains were similar to those of double-allele deletion in diploid strains. Moreover, the isobutanol production of the ILV1 single-allele-deletion diploid strain increased by 27.76%. Variations in higher alcohol production by the mutants are due to the carbon flux changes in yeast metabolism. This study could provide a valuable reference for further research on higher alcohol metabolism and future optimization of yeast strains for alcoholic beverages.


Assuntos
Bebidas Alcoólicas/microbiologia , Ciclo do Carbono/genética , Etanol/metabolismo , Microbiologia de Alimentos/métodos , Hidroliases/genética , Engenharia Metabólica/métodos , Redes e Vias Metabólicas/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Treonina Desidratase/genética , 3-Isopropilmalato Desidrogenase/genética , 3-Isopropilmalato Desidrogenase/metabolismo , China , Fermentação , Deleção de Genes , Humanos , Hidroliases/metabolismo , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Treonina Desidratase/metabolismo
9.
J Ind Microbiol Biotechnol ; 44(3): 397-405, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28154948

RESUMO

Diacetyl causes an unwanted buttery off-flavor in lager beer. The production of diacetyl is reduced by modifying the metabolic pathway of yeast in the beer fermentation process. In this study, BDH2 and ILV5 genes, coding diacetyl reductase and acetohydroxy acid reductoisomerase, respectively, were expressed using a PGK1 promoter in Saccharomyces cerevisiae, which deleted one ILV2 allelic gene. Diacetyl contents and fermentation performances were examined and compared. Results showed that the diacetyl content in beer was remarkably reduced by 16.52% in QI2-KP (one ILV2 allelic gene deleted), 55.65% in QI2-B2Y (overexpressed BDH2 gene and one ILV2 allelic gene deleted), and 69.13% in QI2-I5Y (overexpressed ILV5 gene and one ILV2 allelic gene deleted) compared with the host strain S2. The fermentation ability of mutant strains was similar to that of S2. Results of the present study can lead to further advances in this technology and its broad application in scientific investigations and industrial beer production.


Assuntos
Oxirredutases do Álcool/genética , Diacetil/metabolismo , Deleção de Genes , Proteínas Mitocondriais/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Oxirredutases do Álcool/metabolismo , Alelos , Cerveja/análise , Cerveja/microbiologia , Fermentação , Microbiologia de Alimentos , Proteínas Mitocondriais/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
10.
J Ind Microbiol Biotechnol ; 43(5): 671-9, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26831650

RESUMO

Ethyl carbamate (EC), a pluripotent carcinogen, is mainly formed by a spontaneous chemical reaction of ethanol with urea in wine. The arginine, one of the major amino acids in grape musts, is metabolized by arginase (encoded by CAR1) to ornithine and urea. To reduce the production of urea and EC, an arginase-deficient recombinant strain YZ22 (Δcarl/Δcarl) was constructed from a diploid wine yeast, WY1, by successive deletion of two CAR1 alleles to block the pathway of urea production. The RT-qPCR results indicated that the YZ22 almost did not express CAR1 gene and the specific arginase activity of strain YZ22 was 12.64 times lower than that of parent strain WY1. The fermentation results showed that the content of urea and EC in wine decreased by 77.89 and 73.78 %, respectively. Furthermore, EC was forming in a much lower speed with the lower urea during wine storage. Moreover, the two CAR1 allele deletion strain YZ22 was substantially equivalent to parental strain in terms of growth and fermentation characteristics. Our research also suggested that EC in wine originates mainly from urea that is produced by the arginine.


Assuntos
Arginase/genética , Fermentação , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Uretana/metabolismo , Vinho/análise , Vinho/microbiologia , Alelos , Arginase/metabolismo , Arginina/metabolismo , Carcinógenos/metabolismo , Etanol/metabolismo , Ornitina/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/metabolismo , Ureia/metabolismo
11.
Biotechnol Appl Biochem ; 61(5): 501-9, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24750278

RESUMO

Corncob residue, a waste in xylose or xylitol production, was utilized to produce 2,3-butanediol (2,3-BD) via simultaneous saccharification and fermentation (SSF). This study developed the optimal conditions for production of 2,3-BD by using a heat-resistant strain, Enterobacter cloacae UV4, to perform SSF of the corncob residue. Urea, lactic acid, sodium citrate, and MgSO4 , selected by the Plackett-Burman experiment, were determined to be significant independent variables to conduct the response surface experiment. With the optimized medium, a total production of 28.923 g/L for 2,3-BD and acetoin (BA) was obtained at 60 H. Furthermore, 43.162 g/L of BA production and 0.553 g/L/H of productivity were obtained by fed-batch SSF, which was 0.424 g diol/g consumed corncob residue. The results suggest that the waste corncob residue could be used as an available substrate for the production of 2,3-BD by E. cloacae UV4, as well as a potential resource to improve the economics of microbial compound production.


Assuntos
Técnicas de Cultura Celular por Lotes/métodos , Reatores Biológicos/microbiologia , Butileno Glicóis/metabolismo , Enterobacter cloacae/metabolismo , Zea mays/química , Biocombustíveis , Biomassa , Meios de Cultura/química , Meios de Cultura/metabolismo , Fermentação
12.
Biotechnol Appl Biochem ; 61(6): 707-15, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24527770

RESUMO

Mutants with overexpression of α-acetolactate synthase (ALS), α-acetolactate decarboxylase, and acetoin reductase (AR), either individually or in combination, were constructed to improve 2,3-butanediol (2,3-BD) production in Klebsiella pneumoniae. The recombinant strains were characterized in terms of the enzyme activity, 2,3-BD yield, and expression levels. The recombinant K. pneumoniae strain (KG-rs) that overexpressed both ALS and AR showed an improved 2,3-BD yield. When cultured in the media with five different carbon sources (glucose, galactose, fructose, sucrose, and lactose), the mutant exhibited higher 2,3-BD productivity and production than the parental strain in all the tested carbon sources except for lactose. The 2,3-BD production of KG-rs in a batch fermentation with glucose as the carbon source was 12% higher than that of the parental strain.


Assuntos
Acetolactato Sintase/biossíntese , Oxirredutases do Álcool/biossíntese , Butileno Glicóis/síntese química , Carbono/metabolismo , Acetolactato Sintase/genética , Oxirredutases do Álcool/genética , Butileno Glicóis/química , Fermentação , Regulação Bacteriana da Expressão Gênica , Klebsiella pneumoniae/enzimologia , Klebsiella pneumoniae/genética , Lactatos/química , Mutação
13.
J AOAC Int ; 96(6): 1239-44, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24645500

RESUMO

A single-laboratory validation study was conducted using HPLC for detecting and quantifying acetic acid, furfural, and 5-hydroxymethylfurfural (HMF) in corncob hydrolysates. A pretreatment procedure using dilute sulfuric acid was optimized for corncob hydrolysis. The final hydrolysates were analyzed by HPLC using a C18 RP column with aqueous 0.01% (v/v) H2SO4-CH3OH (95 + 5) as the mobile phase at a flow rate of 1 mL/min. The wavelengths for detecting the three compounds were changed to their optimal UV detection wavelengths at the time of elution. The wavelength detection adjustments were as follow: 205 nm (0 to 4 min); 284 nm (4 to 7 min); and 276 nm (7 to 10 min). Separation was achieved with a chromatographic run time of 10 min. The calibration curves for the three compounds had correlation coefficients (r2) > or = 99.8%. The analytical range, as defined by the calibration curves, was 0.5-10 mg/L for acetic acid, 0.4-22 mg/L for furfural, and 0.1-18 mg/L for HMF. The LODs for acetic acid, furfural, and HMF were estimated to be 0.05, 0.03, and 0.02 mg/L, respectively; the LOQs were 0.196, 0.135, and 0.074 mg/L, respectively. The RSD values for the intraday precision study ranged from 0.31 to 2.22%, and from 0.57 to 2.43% for the interday study. The mean recovery rates in all compounds were between 100.08 and 101.49%.


Assuntos
Ácido Acético/análise , Furaldeído/análogos & derivados , Furaldeído/análise , Biomassa , Calibragem , Cromatografia Líquida de Alta Pressão , Concentração de Íons de Hidrogênio , Hidrólise , Lignina/química , Reprodutibilidade dos Testes , Espectrofotometria Ultravioleta , Ácidos Sulfúricos , Gerenciamento de Resíduos , Zea mays/química
14.
Wei Sheng Wu Xue Bao ; 46(3): 373-8, 2006 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-16933604

RESUMO

Isolate of Amanita spissa was obtained from basidiome stipe material collected from environment. It could utilize a broad range of carbon and nitrogen resources. Study on the influence of different conditions for solid culture was carried out. Optimal culture conditions were at 28 degrees C, pH6, in the dark. A. spissa was then fermentated in liquid culture for more mycelia. In flask and Airlift/ff bioreactor, maximum dry mycelia weight of A. spissa reached 0.893 g/L and 2.33 g/L, respectively. Mycelia obtained from solid culture and Airlift/ff bioreactor were then analyzed by HPLC. The results showed that mycelia from both cultures contained amatoxins but no phallotoxins. alpha-Amanitin in mycelia reached 26.02 microg/DWg under solid culture condition, and 15.25 microg/DWg under liquid culture condition. The amanitins were also confirmed by bud-inhibited assay. The results revealed that the effect of amanitin on mung bean cell was identical to that of authentic amanitins. This work suggests that it is possible to produce amatoxin by liquid culturing of A. spissa.


Assuntos
Amanita/crescimento & desenvolvimento , Amanitinas/análise , Técnicas de Cultura/métodos , Amanita/química , Amanita/efeitos dos fármacos , Amanitinas/isolamento & purificação , Amanitinas/toxicidade , Reatores Biológicos , Carbono/farmacologia , Cromatografia Líquida de Alta Pressão , Escuridão , Fabaceae/efeitos dos fármacos , Fabaceae/crescimento & desenvolvimento , Fermentação/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Micélio/química , Micélio/efeitos dos fármacos , Micélio/crescimento & desenvolvimento , Nitrogênio/farmacologia , Temperatura
15.
Wei Sheng Wu Xue Bao ; 45(5): 702-6, 2005 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-16342759

RESUMO

The liquid culture of Laetiporus sulphureus var. sulphureus was lethal against fruit fly. It was found that extracellular metabolites were primary causation of the lethal effect against fruit fly, which was influenced by pH value. Isolation and analysis with ion-exchange resin column chromatography and HPLC demonstrated that oxalic acid was present in supernatant of Laetiporus sulphureus var. sulphureus, and it was one of the contributing factors to lethal effect against fruit fly and decrease of pH value of culture system. When cultured in airlift reactor, concentration of oxalic acid, quantity of mycelia and pH value was correlated with each other. Further analysis on elution revealed that a kind of oligidic pigment of amaranth in alkaline condition were also lethal against fruit fly.


Assuntos
Polyporaceae/metabolismo , Animais , Drosophila melanogaster/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Ácido Oxálico/análise , Ácido Oxálico/farmacologia , Polyporaceae/crescimento & desenvolvimento , Polyporaceae/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...